Rainbow connection for some families of hypergraphs
نویسندگان
چکیده
An edge-coloured path in a graph is rainbow if its edges have distinct colours. The rainbow connection number of a connected graph G, denoted by rc(G), is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by a rainbow path. The function rc(G) was first introduced by Chartrand et al. [Math. Bohem., 133 (2008), pp. 85-98], and has since attracted considerable interest. In this paper, we introduce two extensions of the rainbow connection number to hypergraphs. We study these two extensions of the rainbow connection number in minimally connected hypergraphs, hypergraph cycles and complete multipartite hypergraphs.
منابع مشابه
Non-monochromatic non-rainbow colourings of σ-hypergraphs
One of the most interesting new developments in hypergraph colourings in these last few years has been Voloshin’s notion of colourings of mixed hypergraphs. In this paper we shall study a specific instance of Voloshin’s idea: a non-monochromatic non-rainbow (NMNR) colouring of a hypergraph is a colouring of its vertices such that every edge has at least two vertices coloured with different colo...
متن کاملOn Point Covers of Multiple Intervals and Axis-Parallel Rectangles
In certain families of hypergraphs the transversal number is bounded by some function of the packing number. In this paper we study hypergraphs related to multiple intervals and axis-parallel rectangles, respectively. Essential improvements of former established upper bounds are presented here. We explore the close connection between the two problems at issue.
متن کاملno-homomorphism conditions for hypergraphs
In this paper, we define some new homomorphism-monotone parameters for hypergraphs. Using these parameters, we extend some graph homomorphism results to hypergraph case. Also, we present some bounds for some well-known invariants of hypergraphs such as fractional chromatic number,independent numer and some other invariants of hyergraphs, in terms of these parameters.
متن کاملFinite families of forbidden subgraphs for rainbow connection in graphs
A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number rc(G) of G is the minimum number of colors such that G is rainbow-connected. We consider families F of connected graphs for which there is a constant kF such that, for every connected F-free graph G, rc(G) ≤ diam...
متن کاملRainbow connection and forbidden subgraphs
A connected edge-colored graph G is rainbow-connected if any two distinct vertices of G are connected by a path whose edges have pairwise distinct colors; the rainbow connection number rc(G) of G is the minimum number of colors such that G is rainbow-connected. We consider families F of connected graphs for which there is a constant kF such that, for every connected F-free graph G, rc(G) ≤ diam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 327 شماره
صفحات -
تاریخ انتشار 2014